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The understanding and quantitative assessment of air flow fields and local micron-
particle wall concentrations in tracheobronchial airways are very important for esti-
mating the health risks of inhaled particulate pollutants, developing algebraic transfer
functions of global lung deposition models used in dose-response analyses, and/or
determining proper drug-aerosol delivery to target sites in the lung. In this paper (Part
1) the theory, model geometries, and air flow results are provided. In a companion
paper (Part 2, Comer et al. 2001), the history of particle deposition patterns and
comparisons with measured data sets are reported. Decoupling of the naturally dilute
particle suspension makes it feasible to present the results in two parts.

Considering a Reynolds number range of 500 6 ReD 6 2000, it is assumed that
the air flow is steady, incompressible and laminar and that the tubular double bi-
furcations, i.e. Weibel’s generations G3–G5, are three-dimensional, rigid, and smooth
with rounded as well as sharp carinal ridges for symmetric planar, and just rounded
carinas for 90◦ non-planar configurations. The employed finite-volume code CFX
(AEA Technology) and its user-enhanced fortran programs were validated with
experimental velocity data points for a single bifurcation. The resulting air flow struc-
tures are analysed for relatively low (ReD = 500) and high (ReD = 2000) Reynolds
numbers. Sequential pressure drops due to viscous effects were calculated and com-
pared, extending a method proposed by Pedley et al. (1977). Such detailed results for
bifurcating lung airways are most useful in the development of global algebraic lung
models.

1. Introduction
The respiratory airways can be approximated as a network of repeatedly bifurcating

tubes with progressively decreasing dimensions and flow rates (Weibel 1963; Ham-
mersely & Olson 1992; Phillips & Kaye 1997). Inhaled particles, e.g. 1 < dp < 10 µm,
are deposited primarily by inertial impaction, especially in the relatively large tra-
cheobronchial airways (Gerrity et al. 1979; Kim et al. 1983). Detailed deposition
characteristics of these particulate pollutants are of great importance because they
have been linked to lung diseases such as bronchiole inflammation, epithelial tis-
sue injuries and bronchial tumours, especially in susceptible population groups (Fox
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1993). Furthermore, detailed computational analyses of multi-branch airways assist
in the development of comprehensive lung models as well as optimal drug delivery
systems. Specifically, the complexity of the lung, rendering it at present inaccessible to
direct numerical (or experimental) simulations, requires segmental algebraic particle
deposition functions in order to develop easy-to-use global lung deposition models
for exposure-dose relationship and subsequently for dose-effect analyses. Once critical
target areas inside the respiratory airways have been identified for certain groups of
patients, therapeutic drug delivery systems can be developed.

Although numerous experimental and numerical studies exist which address selected
aspects of air flow and micron-particle deposition in lung segments, realism was often
oversimplified where single bifurcations and/or simplistic geometric constructions
did not reveal the aerodynamic causes of certain particle deposition patterns. One
of the earliest contributions, Schroter & Sudlow (1969), provided a few velocity
profiles and flow patterns for bifurcating geometries using hot-wire probes and
also smoke tracers. They justified the commonly employed assumptions of steady
air flow, rigid walls, and smooth tubular surfaces based on Reynolds number and
Womersley parameter arguments. They also showed the flow in bifurcating geometries
at higher Reynolds numbers (i.e. ReD = 1090, where ReD is based on tube diameter
D) possessed the characteristic double-peak axial velocity profile in the plane of
bifurcation and the characteristic M-shaped profile in the plane perpendicular to the
bifurcation. Snyder & Olson (1989) investigated experimentally the suppression of
flow separation in pulmonary bifurcations in order to explain the surprisingly effective
airway ventilation in the human lung. Gatlin et al. (1995) modelled the fluid flow in
symmetric ‘physiologically correct’ bifurcations for both steady and oscillating flow at
Reynolds numbers of ReD = 500 and 160 respectively. Later, this model was used for
experimental studies of the fluid flow field by Farag et al. (1998). The experimental
study of Zhao & Lieber (1994) and the numerical study of Zhao, Brunskill & Lieber
(1997) modelled flow in idealized bifurcation geometries for inlet Reynolds numbers
ranging from 500 to 2000. The geometry in these studies was chosen for ease of
replication and to allow smooth transition from the single parent tube to the two
daughter tubes (i.e. a constant cross-sectional area was maintained throughout the
bifurcation transition region). Although this geometry lacked anatomical details of
human bronchial airway structure, we selected this geometry for model validation
(see § 3.1) since it could be reliably reproduced.

The number of studies on the double-bifurcation models of interest here is extremely
small. The classical paper of Schroter & Sudlow (1969) mentioned above gives
a brief description of the flow profiles at three locations in the first and second
bifurcation daughter tubes. However, owing to the differences in bifurcation angle,
carinal curvature, and Reynolds number, it is difficult to compare these results for
the second bifurcation to those of the current system. Also, no detailed measurements
are reported in the vicinity of the bifurcation, which is of key interest in the current
study. In continuation of their work, Pedley, Schroter & Sudlow (1971) focused on
the flow field and pressure drop in multi-branch tubes and developed a ratio of the
dissipation in a tube downstream of a bifurcation to the dissipation for Poiseuille
flow. Such a methodology is most useful in the development of a global algebraic lung
model. The recent study of Lee, Goo & Chung (1996) contains a short discussion
of the flow field in bifurcating geometries; but their results have to be viewed with
caution because they used the same diameter for both parent and daughter tubes,
resulting in a rapid increase in the cross-sectional area, and the length of the daughter
tubes was terminated at 3Dd past the carina, that is, before the flow has become fully
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Figure 1. Double bifurcation geometries: (a) schematics of generations 3, 4 and 5;
(b) Weibel’s lung classification model.

developed, at least at higher Reynolds numbers, i.e. ReD > 500. Wilquem & Degrez
(1997) provided a detailed description of the flow field and pressure drop for steady
flow in a double-bifurcation model of the human central airways. However, the study
is limited to a two-dimensional configuration and therefore is of little use in describing
the complex three-dimensional air flow structures which exist in bifurcating airways.

2. Theory

2.1. Double-bifurcation geometries

Two rigid-wall configurations are considered, i.e. a symmetric planar and a 90◦
non-planar model. Both geometries may be found as generations G3, G4, and G5
employing Weibel’s lung classification scheme (Weibel 1963), which is widely used
for direct comparison purposes (see figure 1a, b). These geometries were based on
the glass tube models utilized in the experimental study by Kim & Fisher (1999).
Owing to the complexity of generating a representative bifurcation model, the CAD
package Pro/Engineer was used to generate three-dimensional surface models where
the carinal ridges of the planar configurations are either rounded or sharp. The system
dimensions are given in figure 2(a, b) with the associated geometric and kinematic
data sets summarized in table 1 and table 2, respectively, for both the planar and
non-planar configurations.

In order to avoid turbulence effects, the maximum Reynolds number chosen was
ReD1

= 2000. The validity of the underlying assumption of steady inspiratory flows in
rigid smooth conduits being representative of a portion of the central human airways
is discussed in Schroter & Sudlow (1969) and supportive data may be found in Fox
(1993).
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Figure 2. Planar geometry: (a) symmetry plane (z = 0) after Weibel (1963) and Kim & Fisher
(1999) and (b) bifurcation symmetry plane; see table 1 for data.

2.2. Governing equations

The continuity and momentum equations for steady laminar incompressible air flow
are given as

∇ · v = 0 (1)

and

(v · ∇)v = −1

ρ
∇p+ ∇ · [ν(∇v + (∇v)tr)]. (2)

For the steady inhalation phase, a parabolic fluid velocity was specified at the inlet.
In the current study, a uniform pressure boundary condition is used for the outlets,
which results in symmetric flow about the first carina (i.e. y = 0). In studies which are
currently in progress, this condition has been modified to measure the effects of the
various levels of flow rate asymmetry due to downstream impedances. The boundary
conditions for the governing equations include symmetry with respect to the plane
of the first bifurcation (i.e. z = 0) and no fluid slip at the rigid smooth impermeable
walls.

2.3. Numerical method

The numerical solution of the fluid flow equations were carried out using a user-
enhanced, commercial finite-volume-based program CFX 4.2 (AEA Technology 1997).
The numerical program uses a structured, multi-block, body-fitted coordinate dis-
cretization scheme. In the present simulation using the CFX program, the simplec
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Bifurcation First Second

Parent duct diameter D1 = 0.6 D2 = 0.5
Daughter duct diameter D2 = 0.5 D3 = 0.35
Bifurcation radius of curvature Rb1 = 2.7D2 Rb2 = 4.7D3

Carinal radius of curvature rc1 = 0.1D2 or 0 rc2 = 0.1D3 or 0
Length of ducts L1 = 2.4 L3 = 3.367

L2 = 0.836
Extent of daughter tube to be used L4 = 0.6
in particle deposition calculations

Bifurcation half-angle θ1 = 30◦ θ2 = 30◦
Transition region length LT1 = 0.64 LT1 = 0.512

LT2 = 0.25 LT2 = 0.18
Carinal ridge height H1 = 0.6 H1 = 0.5

H2 = 0.255 H2 = 0.19
Carinal transition angle θT1 = 98◦ θT1 = 105◦

Transition conic dimension ρconic =
√

2 ρconic =
√

2

Table 1. Geometric parameters for double-bifurcation models (see figure 2a, b).
All dimensions in centimetres.

Physical state Sedentary Light activity Heavy activity

Respiratory rate 7.0 l min−1 20.011 l min−1 60 l min−1

Time ratio of inspiratory phase 0.42 0.42 0.42
(tinsp/ttotal)

Mean flow rate during inspiration 16.7 l min−1 47.7 l min−1 142.9 l min−1

Total cross-sectional area (G = 3) 1.97 cm2 1.97 cm2 1.97 cm2

based on Weibel’s model A
Mean inspiratory ReD1

475 1360 4080

Table 2. Respiratory rate data (Martonen et al. 1994).

algorithm (Patankar 1983) with under-relaxation was employed to solve the flow
equations. The relaxation factor for the velocity is 0.65. All variables, including ve-
locity components and pressure, are located at the centroids of the control volumes.
An improved Rhie–Chow interpolation method was employed to obtain the velocity
components and pressure on the control volume faces from those at the control
volume centres. Hybrid differencing was used to model the convective terms of the
transport equations. In order to ensure accurate flow field simulations, especially the
secondary velocities, the hybrid scheme has been compared to the third-order quick
scheme and the resulting differences in terms of relative velocity magnitudes were
below 10%. The sets of linearized and discretized equations for all variables were
solved using an algebraic multi-grid method (Lonsdale 1993).

A dimensionless approach was adopted for the simulation of the conservation
equations. The mean inlet fluid velocity, U, and the fluid density, ρ, were set equal
to one, and the fluid dynamic viscosity, µ, was adjusted to achieve the desired fluid
Reynolds number, ReD1

= (ρD1U)/µ.
The mesh was generated based on the surface information obtained from the

CAD Pro/Engineer models of the experimental glass tube bifurcations mentioned
previously (see figure 3a–c). Utilizing the assumed symmetry condition about the
first bifurcation plane, the flow field simulation involved only the upper half of the
bifurcation model (i.e. z > 0). The inlet and outlet locations, and the mesh topology
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Figure 3. Finite volume meshes: (a) planar model with rounded carinas; (b) planar model with
sharp carinas; (c) non-planar model with rounded carinas.

were determined by refining the mesh until grid independence of the flow field solution
and particle deposition efficiency was achieved. The final mesh size of the planar and
90◦ non-planar configurations with rounded carinal ridges was 161 000 and 173 000
cells, respectively; for the planar double bifurcation with sharp carinal ridges it was
also 161 000 cells. The computations were performed on a Sun Ultra 60 workstation
with 512 MB of RAM and two 300 MHz CPUs. The steady-state solution of the
flow field was assumed converged when the dimensionless mass residual, (total mass
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Figure 4. Comparison of velocities at ReD = 1036 with Zhao & Lieber (1994): (a) cross-section
2–2′; (b) cross-section 10′; (c) cross-section 15–15′ aligned with bifurcation plane; (d) cross-section
15–15′ perpendicular to bifurcation plane.

residual)/(mass flow rate) < 10−3. Typical run times for the fluid flow simulations on
a single processor was approximately 2.7 hours.

3. Results and discussion
The computer simulation model for air flow has been validated with experimental

velocity data of Zhao & Lieber (1994) for symmetric tubular bifurcations. The
resulting air velocity fields are discussed for representative low (ReD1

= 500) and high
(ReD1

= 2000) Reynolds number flows in different airway configurations, i.e. planar
with rounded or sharp carinal ridges as well as non-planar with rounded carinal
ridges. The section concludes with a summary of the basic research findings and
possible applications.

3.1. Model validation

For two Reynolds numbers, i.e. ReD = 518 and 1036, the measured velocities (Zhao
& Lieber 1994) were compared with the computed velocity profiles in a symmetric
bifurcation with constant cross-sectional areas, a branching angle of 70◦, and a sharp
carinal ridge (see figure 1 in Zhao & Lieber 1994). However, only comparisons for
ReD = 1036 at three cross-sections 2, 10, and 15 of Zhao & Lieber’s model are shown
here, while the lower Reynolds number results may be found in Comer (1998). While
the upstream axial velocity profile, i.e. cross-section 2 top view in the parent tube,
should be perfectly symmetric as predicted, the slightly skewed data points indicate
some flow asymmetry, presumably some blockage effect in one of the daughter tubes
(see figure 4a). At the beginning of the daughter tube, i.e. section 10, the axial velocity
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Figure 5. Scaled double bifurcation (see figure 2a) with coordinate systems and locations of velocity
cross-sections (A–A′ to H–H′) as well as the stations (1–1, 1′–1′ and 2–2) for computing energy
dissipation rates and pressure drops.

profile is naturally skewed towards the divider wall (see figure 4b) and even more
pronounced at cross-section 15 (see figure 4c). The experimental local maximum
velocity as reported in Zhao et al. (1997) differs slightly from the one obtained by
Zhao & Lieber (1994); however, it compares well with the predicted value. In the
transverse plane, i.e. section 15 side view, so-called M-shaped velocity profiles appear
due to secondary flow effects, which in turn are dependent on the Reynolds number
(see figure 4d). No reverse flow was observed in this particular geometry.

3.2. Velocity fields

The velocity fields, in terms of mid-plane velocity vector plots and axial velocity
contours, are shown for two Reynolds numbers, i.e. ReD1

= 500 and 2000, in three
configurations (see figure 3a–c). The velocity fields at ReD1

= 500 and 2000 are shown
first for the planar configuration with rounded and sharp ridges and then for the
non-planar bifurcation. Figure 5 shows half of the scaled bifurcation geometry with
stations A–A′ to H–H′ for which the velocity fields are depicted. An attempt has
been made to duplicate faithfully the inside glass tube geometry of Kim & Fisher
(1999) with its representative diameters, lengths, cross-sections, wall curvatures, and
carinal ridge dimensions (see figure 2a, b and table 1). These geometric features
in conjunction with the fluid inlet condition have to be taken into account when
comparing the simulation results to other publications.

3.2.1. Planar double bifurcation with rounded carinas

The velocity vector plots in the bifurcation plane, i.e. z = 0, show in figures 6(a)
and 6(b) the expected flow fields with subtle differences between the relatively low and
high Reynolds number flows. At the higher air flow rate the distinct shear layer along
the inside wall after the first carina is thinner and the recirculation zone at the outer
wall across from the carinal ridge area is larger when compared to corresponding flow
patterns at ReD1

= 500. The blockage effect of a vortex on the inside wall downstream
of the carina generates, especially at ReD1

= 2000 near the second carina, a strong
transverse flow component in the second daughter tube. Clearly, the sudden increase
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Figure 6. Velocity vector plots for planar double bifurcation with rounded carinas:
(a) inlet Reynolds number ReD1

= 500; (b) inlet Reynolds number ReD1
= 2000.

in flow area at a ratio of 1 : 1.39 at the first bifurcation and the essentially uniform
area ratio at the second bifurcation, i.e. 1 : 0.98, in conjunction with the magnitude of
the half-angle of each branch as well as the carinal ridge curvature, largely determine
the bulk flow features. However, secondary flows, important in aerosol transport and
particle wall deposition, are best observed at selected cross-sections.

Axial velocity contours and secondary velocity vectors are given in figure 7(a, b)
for the cross section A–A′, just upstream of the carina. At that station, the flow is
adjusting to the geometric transition from a circular parent tube via elliptical cross-
sections to the merger toward the two smaller daughter tubes. The contraction of the
top and bottom surfaces is clearly evident. Considering the ReD1

= 500 case, the axial
velocity contours indicate that the bulk stream has split as the fluid moves toward
the daughter tubes. This has not yet occurred for the ReD1

= 2000 case. This can
be attributed to the recirculating flow at the outside of the bifurcation forcing fluid
toward the centre. One possible cause is the vortices which exist at the top/bottom
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Figure 7. Axial velocity contours and secondary velocity vector plots at station A–A′ of planar
double bifurcation with rounded carinas for (a) ReD1

= 500 and (b) ReD1
= 2000.

of the carinal ridge due to its rounded shape. These vortices laterally wrap around
the top/bottom of the geometric transition region.

Figures 8(a) and 8(b) show the velocity fields in cross-section B–B′ at the beginning
of the first daughter tube. For both Reynolds numbers the highest axial velocity is
adjacent to the inside wall of the bifurcation. The secondary velocity field exhibits one
main vortex which moves the high-speed flow up around the top of the tube toward
the outside of the bifurcation and low-speed flow from the outside of the bifurcation
along the symmetry plane toward the inside of the bifurcation. For the ReD1

= 2000
case, a second co-rotating vortex can be seen at the outside of the bifurcation along
the symmetry plane. This secondary vortex may be attributed to flow which wraps
around the top/bottom of the bifurcation as mentioned in the discussion for section
A–A′. From the axial velocity contours it can be seen that only a single-peak axial
profile exists in the plane of the bifurcation and that the characteristic M-profile
has yet to appear. This is as expected at the inlet to the first bifurcation. For the
higher Reynolds number case, however, the high-speed flow has already begun to
wrap around and engulf the slower moving fluid on the outside of the bifurcation.

Figure 9(a, b) shows the velocity fields in cross-section C–C′ at the beginning of
the transition toward the second bifurcation. No additional cross-sections are shown
for the first bifurcation since flow in the first (i.e. single) bifurcation daughter tube
is well understood and can be interpolated from the results at cross-sections B–B′
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Figure 8. As figure 7 but at station B–B′.

and C–C′. The lower Reynolds number flow appears to have shifted further away
from the inside wall of the bifurcation and the secondary flow is considerably weaker
than the higher Reynolds number flow. From the axial velocity contours it can be
seen that at the higher Reynolds number the stronger secondary flow has wrapped
the high-velocity flow completely around the outside of the bifurcation engulfing the
slower moving fluid which has been pushed to the tube centre. This results in the
double-peak axial flow profile at the symmetry plane as described by Schroter &
Sudlow (1969). For the lower Reynolds number flow the axial double-peak velocity
profile does not appear since the high-speed fluid has not completely wrapped around
the tube circumference owing to the weaker secondary flow.

Figure 10(a, b) shows the velocity fields in cross-section D–D′ just upstream of the
second carina. Again, the contraction of the top and bottom surfaces is clearly evident
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Figure 9. As figure 7 but at station C–C′.

and the axial velocity contours for the high Reynolds number flow that were previously
shown to be wrapped around the top/bottom of the surfaces have been ‘clipped’ such
that unequal portions of the high-speed flow are directed into each bifurcation. Of
course, the largest portion of high-speed flow travels down the inside tube (−y′) of the
second bifurcation. The high-velocity flow in the inside tube is shifted back toward the
centre of the second daughter tube at the low Reynolds number, while for the higher
Reynolds number flow it continues to reside closer to the wall. The high-velocity
flow which is directed into the outside tube of the second bifurcation initially travels
down the tube as two unattached high-velocity streams off-set above and below the
symmetry plane. Perhaps the most intriguing aspect of this cross-sectional plot is the
extremely low velocity at the carina centre for the low Reynolds number case and
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Figure 10. As figure 7 but at station D–D′.

the negative axial velocity for the high Reynolds number case. These results have
important implications for the local particle deposition results discussed in Part 2
(Comer, Kleinstreuer & Kim 2001). In summary, it explains why, in contrast to the
first bifurcation, the particle deposition concentration at the second carina centre is
much lower than would be expected based on single bifurcation results. The reason
for the low/negative axial velocity at the carina centre can be better understood by
observing the secondary velocities in the carinal region and comparing them with
that in the first bifurcation (i.e. figure 7a, b). For the first bifurcation, we see that the
carinal ridge has the effect of splitting the flow and pushing it perpendicular to the
carinal ridge (i.e. towards the daughter tubes); however, for the second bifurcation
the carinal ridge has the effect of squeezing the high-flow region which wrapped
around the top/bottom of the bifurcation toward the z = 0 symmetry plane. Since
the momentum of the off-plane fluid is high, it creates a very low flow region near
the carina centre for the low Reynolds number case and reverse flow for the higher
Reynolds number flow. While the secondary velocity vector plots for this cross-section
indicate that the secondary flow away from the carina is directed toward the outside
walls, it should be remembered that the primary flow at this cross-section is aligned
with the daughter tube and thus the secondary flow for this cross-section is biased
toward the outside of the bifurcations.



38 J. K. Comer, C. Kleinstreuer and Z. Zhang

(b)
0.15

0.10

0.05

0

–0.05

–0.10

–0.15

0.1 0 –0.1

Ref. vel.
0.5 U0

EE′ y″

Axial velocity
u/U0

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

1.42
1.33
1.23
1.14
1.04
0.95
0.85
0.76
0.66
0.57
0.47
0.38
0.28
0.19
0.09

z 
(c

m
)

(a)
0.15

0.10

0.05

0

–0.05

–0.10

–0.15

0.1 0 –0.1

Ref. vel.
0.5 U0

EE′ y″

Axial velocity
u/U0

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

1.26
1.17
1.09
1.00
0.92
0.84
0.75
0.67
0.59
0.50
0.42
0.33
0.25
0.17
0.08

z 
(c

m
)

Second carina

Second carina

Figure 11. As figure 7 but at station E–E′.

Figure 11(a, b) shows the velocity fields in cross-section E–E′ at the beginning
of the ‘lower’ daughter tube, i.e. inside the second bifurcation. This cross-section
corresponds to a bifurcation angle of approximately 21◦; thus, the daughter tube is
still curving because the total bifurcation angle is 30◦. The maximum axial velocity
has shifted toward the centre of the daughter tube for the low Reynolds number
case. The secondary velocity indicates that the flow in the central portion of the
daughter tube moves toward the inside of the second bifurcation, while flow along
the inside of the second bifurcation moves down toward the symmetry plane. This
effect was described above for section D–D′. For the high Reynolds number case the
maximum velocity is wrapped around the top/bottom of the daughter tube, engulfing
the slower moving flow as in the previous bifurcation. The secondary velocity for
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Figure 12. As figure 7 but at station F–F′.

this case appears to indicate that the vortex from the first bifurcation persists into
the second bifurcation daughter tube. The primary vortex from the first bifurcation
appears to be strengthened by the carinal effect. A narrow secondary vortex also
appears on the outside of the second bifurcation and extends up along the wall.
This weak vortex may be induced by the primary vortex or it could be attributed
to the Dean flow effect since the rotation would be toward the outside of curvature,
i.e. inside of the second bifurcation. By the Dean flow effect we are referring to the
centrifugal acceleration, U2/Rb, which occurs in curved tubes due to the localized
velocity field and the bifurcation curvature, Rb. In summary, the secondary flow field
in this domain is a result of multiple interactions: (i) the upstream flow field, (ii) the
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Figure 13. As figure 7 but at station G–G′.

bifurcation curvature (i.e. Dean flow effect), and (iii) the effect of the carinal ridge
shape.

Figure 12(a, b) shows the velocity field in cross-section F–F′ at the end of the
bifurcation curvature (i.e. bifurcation angle of 30◦) for the inside tube. At ReD1

= 500,
the maximum velocity region has continued to shift back toward the centre of the
daughter tube due to the secondary motion. When ReD1

= 2000, the highest-axial-
velocity fluid has continued to rotate around the top of the daughter tube, lifting
off from the symmetry plane. The secondary vortex (see figure 12a, b) has spread
completely around the tube circumference. From this point forward the daughter
tubes are straight, thus any curvature effects (i.e. Dean flow effect) will no longer
contribute to the secondary motion. As a result of the continued flow development in
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Figure 14. As figure 7 but at station H–H′.

the straight ‘lower’ daughter tube, the maximum velocity region is essentially centred
there for the low Reynolds number case (Comer 1998). The rotation of the vortices
is such that they would increase the extent of the high-velocity region normal to
the symmetry plane. However, the secondary flow effects in the straight tube become
negligible. The highest-axial-velocity region for the high Reynolds number case has
continued to rotate around until it is located on the inside of the second bifurcation
tube. Again, the secondary velocities for the high Reynolds number case persist
further down the daughter tube, as would be expected.

Figure 13(a, b) shows the velocity field in cross-section G–G′ at the beginning of the
‘upper’ daughter tube, i.e. outside the second bifurcation. As with cross-section E–E′,
this cross-section corresponds to a bifurcation angle of approximately 21◦. Owing
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to the clipping of the high-flow regions described for section D–D′, the maximum
axial velocity for both the high and low Reynolds number cases is located off the
symmetry plane. The secondary velocity field for both cases clearly shows the effect of
the carina flow mentioned earlier. For the low Reynolds number case the secondary
flow indicates a general movement away from the bifurcation centre. The high-flow
case shows the existence of two small vortices. Of interest is the flow field comparison
between the inside and outside bifurcation slices, i.e. E–E′ vs. G–G′. It is readily
apparent that the axial and secondary flow through the inside bifurcation tube after
the second carina is stronger than that for the outside tube, which follows directly
from the high-speed flow travelling along the inside wall.

Figure 14(a, b) shows the velocity fields in cross-section H–H′ at the end of the bi-
furcation curvature (i.e. bifurcation angle of 30◦) for the outside tube. For ReD1

= 500,
the maximum-velocity region has continued to shift back toward the centre of the
daughter tube. When ReD1

= 2000, the highest-axial-velocity flow rotates around the
top of the daughter tube toward the inside of the second bifurcation; this is op-
posite to the rotation in the first bifurcation and the typical Dean flow. However,
this rotation may be a continuation of the geometric transition/carina effect shown
in section H–H′ or it may be due to a modified Dean flow (inertia effect). The
centrifugal acceleration, U2/Rb, is proportional to the axial velocity, thus it follows
that the high-speed region will rotate toward the outside of the curvature (inside of
the bifurcation). Since the high-velocity region is located off the symmetry plane, the
centrifugal acceleration will act such that the fluid would rotate around the top and
bottom of the second daughter tube instead of along the symmetry plane as in normal
Dean flow. The secondary vortex is also observed along the top/bottom of the tube.
From this point forward the daughter tubes are straight, thus any curvature effects
(i.e. Dean-type effect) will no longer contribute to the secondary motion. Comparison
between the velocity magnitudes in the inside and outside bifurcation slices, i.e. F–F′
vs. H–H′ can be made. Again, it is readily apparent that the axial and secondary
flows through the inside bifurcation tube are stronger than those in the outside tube.

At a location about three tube diameters from the second divider of the outside tube,
the maximum-velocity region is centred within the daughter tube and is essentially
fully developed for the low Reynolds number case, while the secondary rotation can
be considered negligible (Comer 1998). The highest-axial-velocity region for the high
Reynolds number case has continued to rotate around until it is located on the
inside of the second bifurcation tube. Again, the secondary velocities for the high
Reynolds number case persist further down the daughter tube. As previously stated,
the secondary circulation of the outside bifurcation tube is considerably weaker than
that of the inside tube.

3.2.2. Planar double bifurcation with sharp carinas

Figures 15(a) and 15(b) depict the mid-plane axial velocity contours at ReD1
= 2000

in the planar double bifurcation with sharp and rounded carinal ridges, respectively.
We can see that the flow fields are quite similar for both configurations. Subtle
differences occur in the vicinity of the carinal ridges due to the geometric alterations.
The ‘round’ case has a relatively larger region of instability in the first carinal region
compared with the ‘sharp’ case. The axial flow fields in the first bifurcation shown
for configurations with a sharp or rounded ridge (figure 15a, b) also resemble the
flow visualization results obtained by Sudlow, Olson & Schroter (1971, figure 5a).
The air stream is split at the sharp carina and dispersed to both daughter tubes. In
the experiment (Sudlow et al. 1971, figure 5b; see also Pedley, Schroter & Sudlow



Flow structures and particle deposition in airways. Part 1 43

(b)Axial velocity
u/U0

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

1.86
1.72
1.58
1.44
1.31
1.17
1.03
0.89
0.75
0.61
0.48
0.34
0.20
0.06

–0.08

(a)Axial velocity
u/U0

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

1.86
1.72
1.58
1.44
1.30
1.16
1.02
0.88
0.74
0.60
0.46
0.33
0.19
0.05

–0.09

Figure 15. Mid-plane axial velocity contours for ReD1
= 2000 of planar double bifurcation with

(a) sharp carinas and (b) rounded carinas.

1977), a more complex pattern was observed around a bluff carina where the radius
of the edge was much greater than that in the present study, i.e. r/D � 0.1, where
r is the radius of the nose of the flow divider and D the diameter of the daughter
branch. The air flow impacts the bluff flow divider, with a portion turned back and
outwards to start the secondary motions in the daughter tubes. It should be noted
that their flow visualization experiments were conducted using a single-bifurcation
model, which is equivalent to the first bifurcation in the present system. There is still
no experiment to verify the negative axial flow phenomena upstream of the second
carina at ReD1

= 2000.
Simulation results also indicated (Kleinstreuer 2000) that the axial velocity contours

and secondary velocity at different cross-sections in the configuration with sharp
carinas are quite similar to those at the corresponding locations in the bifurcation
model with rounded carinas, except in the vicinity of the carinas owing to shape
alterations. The magnitude of the velocity just downstream of the carinal ridge for
the ‘sharp case’ is somewhat smaller than that for the ‘round case’ because of the
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smaller blockage effect of the sharp flow divider. The negative axial flow zone which
appears in the vicinity of the second carina with a very sharp ridge moves towards
the inside daughter tube when compared to the rounded ridge case, which can be
attributed to the different squeezing effects of ‘very sharp’ versus ‘round’ carinal ridges
on the high flow regions.

Noting that the present r/D value of 0.1 is physiologically correct (Horsfield et al.
1971) and that the air flow structures do not differ measurably between bifurcations
with mildly rounded and very sharp carinal ridges, additional velocity fields are
not shown for the sharp ridge case. Furthermore, the following results for the 90◦
non-planar double bifurcation are only given for the rounded ridge case.

3.2.3. 90◦ non-planar double bifurcation

A characteristic of the 90◦ non-planar configuration is that the second pair of
daughter tubes are turned 90◦ (see figure 3c), as might happen in the upper bronchial
tree. Thus deviations in flow patterns when compared with the planar configuration
start to appear before the second carinal ridge. Again, owing to symmetry about
z = 0 only one daughter tube needs to be shown (see figure 5, G–G′ and H–H′). The
region downstream of section C–C′ on the bifurcation plane corresponds to the second
carinal ridge. For the cases of interest, the high-speed flow travels along the inside wall
of the first bifurcation as previously described. Because of the symmetric flow at the
second carina, the higher-speed (inertia) fluid travelling along the contracting inside
wall follows the carinal ridge past the carina centre, displacing the slower moving fluid
along the outside of the second bifurcation carina. The primary difference between
the low and high Reynolds number flow is that in the latter case the flow wraps
further around the carina.

Figure 16(a, b) shows the velocity field in cross-section D–D′ just upstream of the
carina. The contraction of the left and right surfaces (i.e. the inside and outside
surfaces of the first bifurcation) are clearly shown with the deflection of the high-flow
region along the inside wall of the second carina. The low Reynolds number case
indicates that a low-axial-flow region extends from the outside surface of the first
bifurcation toward the carina centre. In the high Reynolds number case this low-flow
region extends further into the carina centre, wrapping upward toward the outside of
the second bifurcation, and even contains a negative flow region on the outside surface
of the first bifurcation. Thus, the high-speed flow which sweeps around the carinal
ridge from the inside to the outside has the effect of deflecting the lower-velocity flow
coming from the outside of the first daughter tube away from the carinal ridge. Like
the planar case, these flow results have important implications for the elucidation of
particle deposition patterns. For example, they explain why the particles at the second
non-planar carina predominately deposit on the inside half of the carina ridge, since
flow (i.e. particles) coming from the outside portion of the first bifurcation is deflected
away from the carinal ridge.

Figure 17(a, b) shows the velocity field in cross-section G–G′ at the beginning of the
non-planar daughter tube in the second bifurcation. As was the case for the planar
configuration this cross-section corresponds to a bifurcation angle of approximately
21◦, thus the daughter tube is still curving to accommodate a total bifurcation angle
of 30◦. For the planar configurations discussed previously the flow field entering the
bifurcation is symmetric about the bifurcation plane (i.e. the prescribed symmetry
condition at z = 0); however, for the non-planar configuration this is not the case,
as discussed previously, and a fully three-dimensional flow field is established at
the entrance of the second daughter tube. For the low Reynolds number case the
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Figure 16. Axial velocity contours and secondary velocity vector plots at station D–D′ of
non-planar double bifurcation for (a) ReD1

= 500 and (b) ReD1
= 2000.

squeezing effect of the second transition region (i.e. carina) has the effect of directing
the fluid vertically toward the outside of the second bifurcation (+z′) and horizontally
wrapping around the bottom (inside, −z′) of the second bifurcation. The latter is the
same flow feature as described for the cross-section D–D′ (see figure 16a, b). In the
high Reynolds number case the higher-flow region has wrapped almost completely
around the slower moving central flow region upstream of the second carina, as
discussed for section D–D′. Thus, as the flow enters the second daughter tube there
is a high-flow region on the outside of the first bifurcation (+y′) which is squeezed or
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Figure 17. As figure 16 but at station G–G′.

funnelled toward the inside of the second bifurcation. This has the effect of opposing
the secondary motion wrapping around the bottom (inside, −z′) of the second
bifurcation; however, the axial flow along the inside wall of the first bifurcation,
which contributes to the secondary motion wrapping around the bottom, is much
stronger. This results in the smaller vortex (i.e. the opposing vortex) being completely
engulfed by the stronger counter-clockwise-rotating vortex. These secondary vortices
have the effect of stretching the high-speed axial region around the bottom (inside,
−z′) and the top (outside, +z′) of the second daughter tube, engulfing the low-flow
region in the middle of the tube. The strong axial and secondary flow around the inside
of the second bifurcation explain the particle deposition patterns shown in Part 2 for
the high Reynolds number case. Again, as mentioned for the planar configuration,
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Figure 18. As figure 16 but at station H–H′.

the secondary flow field is a result of multiple interactions: (i) the upstream flow field,
(ii) the bifurcation curvature (i.e. Dean flow effect) and (iii) the effect of the carinal
ridge shape.

Figure 18(a, b) shows the velocity fields in cross-section H–H′ at the end of the
bifurcation curvature (i.e. bifurcation angle of 30◦) for the non-planar daughter tube.
For the low Reynolds number case the secondary motion continues to move the
developing axial flow region toward the inside of the second bifurcation, which is
consistent with the Dean flow effect. The region of highest axial flow for the high
Reynolds number case is continuing to rotate around the bottom (inside, −z′) of the
second bifurcation owing to the high secondary motion. The larger counter-clockwise-
rotating vortex has completely engulfed the small clockwise-rotating vortex. Since the
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remaining portion of the daughter tube is straight, the secondary motion should begin
to decay and the flow returns to being uni-axial.

With the flow development downstream of the end of the curved wall, the maximum-
axial-velocity region is in the central portion of the daughter tube for the low Reynolds
number case; however, due to the secondary rotation it is offset toward the inside
of the second bifurcation. The highest-axial-velocity region for the high Reynolds
number case has continued to rotate until it is predominately located on the inside of
the second bifurcation tube. As expected, the high Reynolds number case has much
stronger secondary flow than the low Reynolds number case.

3.3. Energy dissipation rate and pressure drop

3.3.1. Energy dissipation

In order to predict the pressure drop across the complicated network of bifurcating
tubes in the entire lung for a given volumetric flow rate, Pedley, Schroter & Sudlow
(1970a, b, 1971, 1977) and Pedley (1977) proposed a method to calculate the total
energy dissipation rate in the bifurcations. Such data sets would be most useful in
the development of global algebraic lung models. The calculation was based on their
experimental data for a double bifurcation, in which the area ratio of daughter to
parent tubes, the branching angles and the local curvatures were different than those
in the present model.

The dissipation per unit volume of the incompressible fluid (Φ) at any point can
be written as

Φ = µ

[
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The dissipation per unit length of the tube at a given station x is then given as

D1(x) =

∮
A

ΦdA, (4)

where A is the cross-sectional area of the tube, and x is the distance from the flow
divider. The total dissipation in a tube between x1 and x2 is then

D =

∫ x2

x1

D1(x)dx. (5)

The ratio of D1(x) and D to that in Poiseuille flow can be expressed in terms of
dimensionless variables Y (x) and Z:

Y (x) = D1(x)/(8πµŪ2) (6)

and

Z = D/[8πµŪ2(x2 − x1)] (7)

where Ū = (1/A)
∮
A
udA.

Following Pedley et al. (1977), a junction and its pair of daughter tubes are referred
to as a single unit. This consists of the region between two stations: one is at the
downstream end of the parent tube before it ceases to be circular (see station 1 of
figure 5), and the other is at the downstream end of a daughter tube (station 2). Pedley
et al. (1970a, b, 1971, 1977) neglected the viscous dissipation at the junction and in
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Case 1 2 3

Re 1200 900 600 300 720 545 366 190 960 715 474 230
Z 6.13 5.35 4.38 3.04 1.60 1.44 1.27 1.08 1.86 1.69 1.49 1.15
γ 0.23 0.23 0.23 0.23 0.16 0.16 0.17 0.20 0.16 0.17 0.18 0.20

Table 3. Energy dissipation rates for different local Reynolds numbers.

the bifurcation zone. (This assumption is discussed below.) Here, we first consider
only the viscous dissipation which takes place in the daughter tube between stations
1′ and 2 (figure 5).

As suggested by Pedley et al. (1977) and Pedley (1977), the dissipation rate would
depend on the Reynolds number and on the distance downstream in the same way
as in a regular entrance-length problem. The expression for the dissipation rate in a
segment of the tube between stations at distances x1 and x2 from the divider is

Z =
γRe1/2

[(x1/d)1/2 + (x2/d)1/2]
, (8)

where d is the tube diameter, and γ is a constant of proportionality, allowing dissi-
pation to be related to the flow rate. Presumably, its actual value is dependent on the
particular geometry.

From (4) and (6) we can obtain the values for D1(x) and Y at different positions
x. The values of D are computed from (5) using Simpson’s rule using D1(x). Finally,
the values of Z are obtained from (7), as given in table 3. In this table, case 1 refers
to the first daughter tube; cases 2 and 3 represent the outside and inside of the
second daughter tube, respectively. With (8), γ can be obtained given the values of
Z computed from (7). The values of γ for different cases are also given in table 3.
The dissipation rate and pressure drops are different for the planar and non-planar
geometries. The presented results are only for the planar geometry.

From table 3, we can see that there is no systematic variation of γ with Re for
the three cases. However, the difference between the value of γ for case 1 and that
for cases 2 and 3 is noticeable. The average value of γ for case 1 is 0.23, while
it is 0.17 for cases 2 and 3. Moreover, both these values are much smaller than
the one obtained by Pedley et al. (1977) from the data set in double bifurcations,
where γ̄ was 0.33. In fact, Pedley et al. (1977) also showed that the γ-values in the
second bifurcation were uniformly smaller than those in the first bifurcation. Thus,
the present simulation results indicate that the greater complexity of the motion after
several junctions prevents the complete dominance of an entrance-flow-type boundary
layer, as discussed by Pedley et al. (1977). This also implies that the local pressure
drop predictions in each generation of the entire lung cannot rely on a constant
γ-value, e.g. γ̄ = 0.33.

3.3.2. Pressure drop

Considering the energy balance for a single unit, i.e. from station 1 to station 2 (see
figure 5), the relevant equation is

∆p = ∆pk + ∆pv. (9)

Here, ∆p is the mean static pressure drop, ∆pk the pressure change due to kinetic
energy changes, in general negative when the cross-sectional area increases through
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Case Re ∆p ∆p(1)
v ∆p(2)

v ∆p(3)
v

1 1200 2.75 5.47 4.57 6.55
900 1.66 3.33 2.97 4.27
600 0.92 1.86 1.61 2.32
300 0.34 0.60 0.57 0.82

2 730 4.01 3.29 4.24 8.25
547 2.85 2.21 2.80 5.43
365 1.73 1.27 1.54 2.29
183 0.49 0.55 0.58 1.12

3 960 2.60 5.71 6.54 12.70
713 2.29 3.52 4.20 8.16
475 1.74 1.90 2.27 4.41
237 0.81 0.68 0.77 1.49

Table 4. Pressure drops in daughter tubes (see figure 5) (dimensions in N m−2).

the bifurcation, and ∆pv is the pressure drop due to viscous dissipation (also called
viscous pressure drop), where

∆p =

[∮
A

pudA
/∮

A

udA

]1

2

, (10)

∆pk =

[∮
A

1
2
ρq2udA

/∮
A

udA

]2

1

, (11)

and

∆pv = D
/∮

A

udA. (12)

Although the pressure drop in one bifurcation is too small to be measured exper-
imentally, it can be obtained from numerical simulation results. Thus the method
of predicting static and viscous pressure drops using empirical equations can be
examined in the light of the simulated pressure drops. Table 4 lists the pressure
drops in different daughter tubes in the present planar double-bifurcation model with
rounded carinal ridges at various Reynolds numbers. The values of ∆p and ∆pk were
obtained from simulations; ∆p(1)

v was calculated from (9) using simulation data; ∆p(2)
v

and ∆p(3)
v were computed from values of D using the following equation (Pedley et

al. 1977):

D = γ̄

(
d

l
Re

)1/2

(8πµŪ2l), (13)

where l is the length of the tube. In (13), the values of γ̄ were taken as 0.23 and
0.17 for calculating ∆p(2)

v in the first and second daughter tube, respectively; and 0.33
(which was used by Pedley et al. 1977) for computing ∆p(3)

v in both bifurcations. The
length of the first daughter tube was taken as 0.836 cm and 1.05 cm for the second
daughter tube. It is apparent that the predicted viscous pressure drops in generations
G4 and G5 using γ̄ = 0.33 are much larger than the simulated values. However,
the predicted values of the viscous pressure drop (∆p(2)

v ) agree with the stimulated
values, with relative errors below 30%. This indicates that Pedley et al.’s method is
applicable and useful in predicting viscous dissipation in tubes of bifurcating airway
models provided that appropriate γ̄-values are used for each generation.
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Case 1 2

Re 2000 1500 1000 500 1200 900 600 300
∆p(1)

v 4.48 2.61 1.23 0.37 4.91 2.88 1.37 0.38

Table 5. Simulated viscous pressure drop in the bifurcation zone (around the flow divider)
(dimensions in N m−2).

Case Re ∆p ∆p(1)
v ∆p(2)

v ∆p(3)
v

1 2000 −2.89 9.95 9.05 6.55
1500 −1.37 5.94 5.61 4.27
1000 −0.42 3.09 2.87 2.32
500 0.038 0.97 0.95 0.82

2 1200 3.94 9.42 10.29 10.48
900 3.05 5.73 6.38 6.80
600 2.07 2.95 3.26 3.70
300 0.93 1.00 1.06 1.31

Table 6. Pressure drops in the first and second bifurcation (dimensions in N m−2).

Table 5 shows the viscous pressure drop obtained by numerical simulation for
selected Reynolds numbers in the bifurcation zone around the flow divider (i.e. from
station 1 to station 1′), which had been neglected by Pedley et al. (1977). Cases 1
and 2 refer to the viscous pressure drop in the first and second bifurcation zone,
respectively. It should be noted that in case 2, averaged values of static pressure and
kinetic energy from the inside and outside of the second daughter branch are used to
calculate ∆p(1)

v at station 1′, caused by the difference in local flow rates.
The viscous pressure drop in the bifurcation zones can be described by an empirical

equation as follows:

∆pv = C1Q
a, (14)

were Q is the volumetric flow rate (l min−1) approaching the flow divider and the
coefficients are

Case 1: C1 = 0.086, a = 1.80;
Case 2: C1 = 0.313, a = 1.846.
Table 6 lists the total simulated static pressure drop ∆p and the viscous pressure

drop ∆p(1)
v in one bifurcation (i.e. between stations 1 and 2). The predicted viscous

pressure ∆p(2)
v obtained with the present method (i.e. considering the dissipation

in both the bifurcation zone and the daughter tube), and ∆p(3)
v via Pedley et al.’s

simplified method are given as well. The meaning of cases 1 and 2 is the same as
those in table 5. It is apparent that the predicted viscous pressure drops (∆p(2)

v ) are
essentially consistent with the numerically stimulated values (∆p(1)

v ). Compared with
the simulated pressure drops, Pedley et al.’s approach underestimates the viscous
pressure drops for case 1, though it overestimates the viscous pressure drops in the
tubes of generation G4. This is because the relatively high viscous dissipation rates
around the flow dividers were neglected. In contrast, the viscous pressure drop ∆p(3)

v

for case 2 is consistently overestimated, and approximated to the simulated values,
because the overestimation of the viscous pressure in the tube of G5 will cancel the
errors caused by neglecting the viscous pressure drop in the bifurcation zone. This
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may account for the fact that the overall bronchial pressure drop predicted by Pedley
et al. (1977) agrees well with some experimental values (Ferris, Mead & Opie 1964).
In summary, the overestimated effect of viscous dissipation in the daughter tubes
after the trachea using γ̄ = 0.33 in Pedley et al.’s model will cancel some errors of
neglecting the viscous dissipation in the bifurcation zones.

4. Conclusions
The validated computer analysis of the multi-generational respiratory model pro-

vides insight into the complex flow patterns which exist in the human respiratory
airways, mainly due to the interactions of upstream flow fields and flow patterns gen-
erated by the transition geometries, including changes in cross-sectional areas, wall
curvatures, and carinal ridges. These results indicate the underlying mechanism that
determines the deposition patterns and local surface concentrations of aerosols, the
primary topic of the companion paper (see Part 2, Comer et al. 2001). While Weibel’s
lung model contains realistic tube diameters and lengths, it bifurcates symmetrically
and hence may not be fully representative of actual lung casts. Nevertheless, because
of its ease of use the model has been, and is being, used by the vast majority of
aerosol researchers for direct comparison of experimental and theoretical results. Al-
though most bronchial bifurcations are somewhat asymmetric (Horsfield et al. 1971;
Phillips & Kaye 1997), some studies have shown that steady inspiratory flow in an
asymmetric bifurcation exhibits the main features of the symmetric case (Chang &
El Masry 1982; Isabey & Chang 1982; Chang & Menon 1985).

The air flow fields in the planar double-bifurcation models with both rounded and
sharp carinal ridges exhibit only subtle differences if the radius of the nose of the
flow divider (r), is equal to 0.1 or less of the diameter of the daughter branch (D).
Earlier studies have shown that the ratio r/D can vary between zero (for a very
sharp divider) and one (for a very blunt flow divider), but in general the r/D ratio is
approximately 0.1 or less (Horsfield et al. 1971). The complexities of the geometries
of actual carinal ridge shapes were clearly displayed with in vivo photographs taken
by Oho & Amemiya (1980). Their pictures exhibit a wide variety of individual carinal
ridge shapes, including sharp wedge-like, blunt, parabolic (rounded), and saddle ones.
Hence, the rounded carinas with r/D = 0.1 in the present configurations should
influence the flow field in a physiologically realistic way. In addition, Martonen, Yang
& Xue (1994) also showed that there was not much of a difference in velocity fields
between different symmetric carinal ridge shapes, at least in their two-dimensional
simulations of single-bifurcation models. Thus the present study of air flow in the
double bifurcation with slighted rounded ridges should be a representative case for
three-dimensional air flow simulation in multiple bifurcation models. Because of the
lack of measurable upstream effects, even at Re = 500, single bifurcation models
are of interest, but they do not capture most of the significant air flow fields in
lung airways. This was achieved with the present double-bifurcation planar and 90◦
non-planar configurations. As a result, the generality and physical insight of the air
flow structures described in this paper instil sufficient confidence to extrapolate the
results to more complex bifurcating systems. Indeed, extensions to the current double-
bifurcation model are under investigation (Kleinstreuer 2000; Zhang, Kleinstreuer &
Kim 2001).

The major differences in flow patterns between the present planar and non-planar
models are the following. (i) The flow patterns of both configurations begin to change
upstream of the second carina. In the non-planar configuration, the high-axial-flow
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region moves toward the inside wall of the second carina, and a low-axial-flow region
extends from the outside surface of the second bifurcation toward the carinal centre.
The high-speed flow sweeps around the carinal ridge from the inside to the outside
and deflects the lower-velocity flow coming from the outside of the first daughter
tube away from the carinal ridge. As a result, particles (Part 2) deposit mainly on
the inside half of the carinal ridge for non-planar geometries. (ii) In the second
daughter tubes of the non-planar configuration, the flow field is not symmetric about
the bifurcation plane, and fully three-dimensional flow is established at the ‘entrance’.
The fluid is directed vertically toward the top of the tube and horizontally wrapped
around the bottom. Strong axial and secondary flows are formed near the bottom of
the second daughter tube as the flow develops. However, for planar geometries, the
maximum-axial-velocity region and the primary vortex stay near the tube centre in
most cases.

According to the simulated velocity and pressure fields in the present planar
double-bifurcation model representing generations G3–G5 in Weibel’s lung model,
it is shown that the expression for the energy dissipation rate D as proposed by
Pedley et al. (1977) can be successfully employed to predict viscous pressure drops
in the daughter tubes with appropriate values of γ̄. The value of γ̄ changes with the
generation number. In addition to the tubular pressure drops, the energy dissipation
in each bifurcation zone has to be accounted for as well. The results, i.e. sequential
pressure drops in bifurcating lung airways, are most useful in the development of
global algebraic lung models.
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